
Use left/right keys to change slide

Back to Workshop Page

 Everything you wanted to know Everything you wanted to know

 (and more) about (and more) about

 PyTorch tensors PyTorch tensors

Marie-Hélène Burle Marie-Hélène Burle
training@westgrid.ca training@westgrid.ca

January 27, 2022 January 27, 2022

https://westgrid-ml.netlify.app/workshops/torchtensors/

Many drawings in this workshop come from the book:

The section on storage is also highly inspired by it

Using tensors locallyUsing tensors locally

You need to have & installed

Additionally, you might want to use an IDE such as if you are an Emacs
user, , etc.

Note that PyTorch does not yet support Python 3.10 except in some Linux

distributions or on systems where a wheel has been built

For the time being, you might have to use it with Python 3.9

Python PyTorch

elpy
JupyterLab

https://www.python.org/downloads/
https://pytorch.org/get-started/locally/
https://github.com/jorgenschaefer/elpy
https://jupyter.org/

Using tensors on CC clustersUsing tensors on CC clusters

In the cluster terminal:

You can then launch jobs with sbatch or salloc

Leave the virtual env with the command: deactivate

avail_wheels "torch*" # List available wheels & compatible Python versions
module avail python # List available Python versions
module load python/3.9.6 # Load a sensible Python version
virtualenv --no-download env # Create a virtual env
source env/bin/activate # Activate the virtual env
pip install --no-index --upgrade pip # Update pip
pip install --no-index torch # Install PyTorch

- What is a PyTorch tensor?- What is a PyTorch tensor?

- Memory storage- Memory storage

- Data type (dtype)- Data type (dtype)

- Basic operations- Basic operations

- Working with NumPy- Working with NumPy

- Linear algebra- Linear algebra

- Harvesting the power of GPUs- Harvesting the power of GPUs

- Distributed operations- Distributed operations

- What is a PyTorch tensor?- What is a PyTorch tensor?

- Memory storage- Memory storage

- Data type (dtype)- Data type (dtype)

- Basic operations- Basic operations

- Working with NumPy- Working with NumPy

- Linear algebra- Linear algebra

- Harvesting the power of GPUs- Harvesting the power of GPUs

- Distributed operations- Distributed operations

ANN do not process information directlyANN do not process information directly

Modi�ed from Stevens, E., Antiga, L., & Viehmann, T. (2020). Deep learning with PyTorch. Manning Publications

It needs to be converted to numbersIt needs to be converted to numbers

Modi�ed from Stevens, E., Antiga, L., & Viehmann, T. (2020). Deep learning with PyTorch. Manning Publications

All these numbers need to be stored All these numbers need to be stored
in a data structurein a data structure

PyTorch tensors are Python objects holding multidimensional arrays

Stevens, E., Antiga, L., & Viehmann, T. (2020). Deep learning with PyTorch. Manning Publications

Why a new object when NumPy ndarrayWhy a new object when NumPy ndarray
already exists?already exists?

Can run on accelerators (GPUs, TPUs…)

Keep track of computation graphs, allowing automatic differentiation

Future plan for sharded tensors to run distributed computations

What is a PyTorch tensor?What is a PyTorch tensor?

PyTorch is foremost a deep learning library

In deep learning, the information contained in objects of interest (e.g.
images, texts, sounds) is converted to �oating-point numbers (e.g. pixel

values, token values, frequencies)

As this information is complex, multiple dimensions are required (e.g. two

dimensions for the width & height of an image, plus one dimension for the
RGB colour channels)

Additionally, items are grouped into batches to be processed together,
adding yet another dimension

Multidimensional arrays are thus particularly well suited for deep learning

What is a PyTorch tensor?What is a PyTorch tensor?

Arti�cial neurons perform basic computations on these tensors

Their number however is huge & computing ef�ciency is paramount

GPUs/TPUs are particularly well suited to perform many simple operations
in parallel

The very popular has, at its core, a mature multidimensional
array object well integrated into the scienti�c Python ecosystem

But the PyTorch tensor has additional ef�ciency characteristics ideal for
machine learning & it can be converted to/from NumPy’s ndarray if needed

NumPy library

https://numpy.org/

- What is a PyTorch tensor?- What is a PyTorch tensor?

- Memory storage- Memory storage

- Data type (dtype)- Data type (dtype)

- Basic operations- Basic operations

- Working with NumPy- Working with NumPy

- Linear algebra- Linear algebra

- Harvesting the power of GPUs- Harvesting the power of GPUs

- Distributed operations- Distributed operations

Ef�icient memory storageEf�icient memory storage

In Python, collections (lists, tuples) are groupings of boxed Python objects

PyTorch tensors & NumPy ndarrays are made of unboxed C numeric types

Stevens, E., Antiga, L., & Viehmann, T. (2020). Deep learning with PyTorch. Manning Publications

Ef�icient memory storageEf�icient memory storage

They are usually contiguous memory blocks, but the main difference is that
they are unboxed: �oats will thus take 4 (32-bit) or 8 (64-bit) bytes each

Boxed values take up more memory
(memory for the pointer + memory for the primitive)

Stevens, E., Antiga, L., & Viehmann, T. (2020). Deep learning with PyTorch. Manning Publications

ImplementationImplementation

Under the hood, the values of a PyTorch tensor are stored as a torch.Storage

instance which is a one-dimensional array

Output >>>

import torch
t = torch.arange(10.).view(2, 5); print(t) # Functions explained later

tensor([[0., 1., 2., 3., 4.],
 [5., 6., 7., 8., 9.]])

ImplementationImplementation

Output >>>

storage = t.storage(); print(storage)

 0.0
 1.0
 2.0
 3.0
 4.0
 5.0
 6.0
 7.0
 8.0
 9.0
[torch.FloatStorage of size 10]

ImplementationImplementation

The storage can be indexed

Output >>>

storage[3]

3.0

ImplementationImplementation

Output >>>

storage[3] = 10.0; print(storage)

 0.0
 1.0
 2.0
 10.0
 4.0
 5.0
 6.0
 7.0
 8.0
 9.0
[torch.FloatStorage of size 10]

ImplementationImplementation

To view a multidimensional array from storage, we need metadata :

the size (shape in NumPy) sets the number of elements in each dimension

the offset indicates where the �rst element of the tensor is in the storage

the stride establishes the increment between each element

Storage metadataStorage metadata

Stevens, E., Antiga, L., & Viehmann, T. (2020). Deep learning with PyTorch. Manning Publications

Storage metadataStorage metadata

Output >>>

size: (2, 5)

offset: 0

stride: (5, 1)

t.size()
t.storage_offset()
t.stride()

torch.Size([2, 5])
0
(5, 1)

Storage metadataStorage metadata

Sharing storageSharing storage

Multiple tensors can use the same storage, saving a lot of memory since the
metadata is a lot lighter than a whole new array

Stevens, E., Antiga, L., & Viehmann, T. (2020). Deep learning with PyTorch. Manning Publications

Transposing in 2 dimensionsTransposing in 2 dimensions

Output >>>

t = torch.tensor([[3, 1, 2], [4, 1, 7]]); print(t)
t.size()
t.t()
t.t().size()

tensor([[3, 1, 2],
 [4, 1, 7]])
torch.Size([2, 3])
tensor([[3, 4],
 [1, 1],
 [2, 7]])
torch.Size([3, 2])

Transposing in 2 dimensionsTransposing in 2 dimensions

= �ipping the stride elements around

Stevens, E., Antiga, L., & Viehmann, T. (2020). Deep learning with PyTorch. Manning Publications

Transposing in higher dimensionsTransposing in higher dimensions

torch.t() is a shorthand for torch.transpose(0, 1):

Output >>>

While torch.t() only works for 2D tensors, torch.transpose() can be used to

transpose 2 dimensions in tensors of any number of dimensions

torch.equal(t.t(), t.transpose(0, 1))

True

Transposing in higher dimensionsTransposing in higher dimensions

Output >>>

t = torch.zeros(1, 2, 3); print(t)

t.size()
t.stride()

tensor([[[0., 0., 0.],
 [0., 0., 0.]]])

torch.Size([1, 2, 3])
(6, 3, 1)

Transposing in higher dimensionsTransposing in higher dimensions

Output >>>

t.transpose(0, 1)

t.transpose(0, 1).size()
t.transpose(0, 1).stride()

tensor([[[0., 0., 0.]],
 [[0., 0., 0.]]])

torch.Size([2, 1, 3])
(3, 6, 1) # Notice how transposing flipped 2 elements of the stride

Transposing in higher dimensionsTransposing in higher dimensions

Output >>>

t.transpose(0, 2)

t.transpose(0, 2).size()
t.transpose(0, 2).stride()

tensor([[[0.],
 [0.]],
 [[0.],
 [0.]],
 [[0.],
 [0.]]])

torch.Size([3, 2, 1])
(1, 3, 6)

Transposing in higher dimensionsTransposing in higher dimensions

Output >>>

t.transpose(1, 2)

t.transpose(1, 2).size()
t.transpose(1, 2).stride()

tensor([[[0., 0.],
 [0., 0.],
 [0., 0.]]])

torch.Size([1, 3, 2])
(6, 1, 3)

- What is a PyTorch tensor?- What is a PyTorch tensor?

- Memory storage- Memory storage

- Data type (dtype)- Data type (dtype)

- Basic operations- Basic operations

- Working with NumPy- Working with NumPy

- Linear algebra- Linear algebra

- Harvesting the power of GPUs- Harvesting the power of GPUs

- Distributed operations- Distributed operations

Default dtypeDefault dtype

Since PyTorch tensors were built with utmost ef�ciency in mind for neural
networks, the default data type is 32-bit �oating points

This is suf�cient for accuracy & much faster than 64-bit �oating points

Note that, by contrast, NumPy ndarrays use 64-bit as their default

List of PyTorch tensor dtypesList of PyTorch tensor dtypes

torch.�oat16 / torch.half 16-bit / half-precision �oating-point

torch.�oat32 / torch.�oat 32-bit / single-precision �oating-point

torch.�oat64 / torch.double 64-bit / double-precision �oating-point

torch.uint8 unsigned 8-bit integers

torch.int8 signed 8-bit integers

torch.int16 / torch.short signed 16-bit integers

torch.int32 / torch.int signed 32-bit integers

torch.int64 / torch.long signed 64-bit integers

torch.bool boolean

Checking & changing dtypeChecking & changing dtype

Output >>>

t = torch.rand(2, 3); print(t)
t.dtype # Remember that the default dtype for PyTorch tensors is float32
t2 = t.type(torch.float64); print(t2) # If dtype ≠ default, it is printed
t2.dtype

tensor([[0.8130, 0.3757, 0.7682],
 [0.3482, 0.0516, 0.3772]])
torch.float32
tensor([[0.8130, 0.3757, 0.7682],
 [0.3482, 0.0516, 0.3772]], dtype=torch.float64)
torch.float64

- What is a PyTorch tensor?- What is a PyTorch tensor?

- Memory storage- Memory storage

- Data type (dtype)- Data type (dtype)

- Basic operations- Basic operations

- Working with NumPy- Working with NumPy

- Linear algebra- Linear algebra

- Harvesting the power of GPUs- Harvesting the power of GPUs

- Distributed operations- Distributed operations

Creating tensorsCreating tensors

torch.tensor: Input individual values

torch.arange: Similar to range but creates a 1D tensor

torch.linspace: 1D linear scale tensor

torch.logspace: 1D log scale tensor

torch.rand: Random numbers from a uniform distribution on [0, 1)

torch.randn: Numbers from the standard normal distribution

torch.randperm: Random permutation of integers

torch.empty: Uninitialized tensor

torch.zeros: Tensor �lled with 0

torch.ones: Tensor �lled with 1

torch.eye: Identity matrix

Creating tensorsCreating tensors

Output >>>

torch.manual_seed(0) # If you want to reproduce the result
torch.rand(1)

torch.manual_seed(0) # Run before each operation to get the same result
torch.rand(1).item() # Extract the value from a tensor

tensor([0.4963])

0.49625658988952637

Creating tensorsCreating tensors

Output >>>

torch.rand(1)
torch.rand(1, 1)
torch.rand(1, 1, 1)
torch.rand(1, 1, 1, 1)

tensor([0.6984])
tensor([[0.5675]])
tensor([[[0.8352]]])
tensor([[[[0.2056]]]])

Creating tensorsCreating tensors

Output >>>

torch.rand(2)
torch.rand(2, 2, 2, 2)

tensor([0.5932, 0.1123])
tensor([[[[0.1147, 0.3168],
 [0.6965, 0.9143]],
 [[0.9351, 0.9412],
 [0.5995, 0.0652]]],
 [[[0.5460, 0.1872],
 [0.0340, 0.9442]],
 [[0.8802, 0.0012],
 [0.5936, 0.4158]]]])

Creating tensorsCreating tensors

Output >>>

torch.rand(2)
torch.rand(3)
torch.rand(1, 1)
torch.rand(1, 1, 1)
torch.rand(2, 6)

tensor([0.7682, 0.0885])
tensor([0.1320, 0.3074, 0.6341])
tensor([[0.4901]])
tensor([[[0.8964]]])
tensor([[0.4556, 0.6323, 0.3489, 0.4017, 0.0223, 0.1689],
 [0.2939, 0.5185, 0.6977, 0.8000, 0.1610, 0.2823]])

Creating tensorsCreating tensors

Output >>>

torch.rand(2, 4, dtype=torch.float64) # You can set dtype
torch.ones(2, 1, 4, 5)

tensor([[0.6650, 0.7849, 0.2104, 0.6767],
 [0.1097, 0.5238, 0.2260, 0.5582]], dtype=torch.float64)
tensor([[[[1., 1., 1., 1., 1.],
 [1., 1., 1., 1., 1.],
 [1., 1., 1., 1., 1.],
 [1., 1., 1., 1., 1.]]],
 [[[1., 1., 1., 1., 1.],
 [1., 1., 1., 1., 1.],
 [1., 1., 1., 1., 1.],
 [1., 1., 1., 1., 1.]]]])

Creating tensorsCreating tensors

Output >>>

t = torch.rand(2, 3); print(t)
torch.zeros_like(t) # Matches the size of t
torch.ones_like(t)
torch.randn_like(t)

tensor([[0.4051, 0.6394, 0.0871],
 [0.4509, 0.5255, 0.5057]])
tensor([[0., 0., 0.],
 [0., 0., 0.]])
tensor([[1., 1., 1.],
 [1., 1., 1.]])
tensor([[-0.3088, -0.0104, 1.0461],
 [0.9233, 0.0236, -2.1217]])

Creating tensorsCreating tensors

Output >>>

torch.arange(2, 10, 4) # From 2 to 10 in increments of 4
torch.linspace(2, 10, 4) # 4 elements from 2 to 10 on the linear scale
torch.logspace(2, 10, 4) # Same on the log scale
torch.randperm(4)
torch.eye(3)

tensor([2, 6])
tensor([2.0000, 4.6667, 7.3333, 10.0000])
tensor([1.0000e+02, 4.6416e+04, 2.1544e+07, 1.0000e+10])
tensor([1, 3, 2, 0])
tensor([[1., 0., 0.],
 [0., 1., 0.],
 [0., 0., 1.]])

Tensor informationTensor information

Output >>>

t = torch.rand(2, 3); print(t)
t.size()
t.dim()
t.numel()

tensor([[0.5885, 0.7005, 0.1048],
 [0.1115, 0.7526, 0.0658]])
torch.Size([2, 3])
2
6

Tensor indexingTensor indexing

Output >>>

x = torch.rand(3, 4)
x[:] # With a range, the comma is implicit: same as x[:,]
x[:, 2]
x[1, :]
x[2, 3]

tensor([[0.6575, 0.4017, 0.7391, 0.6268],
 [0.2835, 0.0993, 0.7707, 0.1996],
 [0.4447, 0.5684, 0.2090, 0.7724]])
tensor([0.7391, 0.7707, 0.2090])
tensor([0.2835, 0.0993, 0.7707, 0.1996])
tensor(0.7724)

Tensor indexingTensor indexing

Output >>>

x[-1:] # Last element (implicit comma, so all columns)
x[-1] # No range, no implicit comma: we are indexing
from a list of tensors, so the result is a one dimensional tensor
(Each dimension is a list of tensors of the previous dimension)
x[-1].size() # Same number of dimensions than x (2 dimensions)
x[-1:].size() # We dropped one dimension

tensor([[0.8168, 0.0879, 0.2642, 0.3777]])
tensor([0.8168, 0.0879, 0.2642, 0.3777])

torch.Size([4])
torch.Size([1, 4])

Tensor indexingTensor indexing

Output >>>

x[0:1] # Python ranges are inclusive to the left, not the right
x[:-1] # From start to one before last (& implicit comma)
x[0:3:2] # From 0th (included) to 3rd (excluded) in increment of 2

tensor([[0.5873, 0.0225, 0.7234, 0.4538]])
tensor([[0.5873, 0.0225, 0.7234, 0.4538],
 [0.9525, 0.0111, 0.6421, 0.4647]])
tensor([[0.5873, 0.0225, 0.7234, 0.4538],
 [0.8168, 0.0879, 0.2642, 0.3777]])

Tensor indexingTensor indexing

Output >>>

x[None] # Adds a dimension of size one as the 1st dimension
x.size()
x[None].size()

tensor([[[0.5873, 0.0225, 0.7234, 0.4538],
 [0.9525, 0.0111, 0.6421, 0.4647],
 [0.8168, 0.0879, 0.2642, 0.3777]]])
torch.Size([3, 4])
torch.Size([1, 3, 4])

A word of caution about indexingA word of caution about indexing

While indexing elements of a tensor to extract some of the data as a �nal

step of some computation is �ne, you should not use indexing to run

operations on tensor elements in a loop as this would be extremely

inef�cient

Instead, you want to use vectorized operations

Vectorized operationsVectorized operations

Since PyTorch tensors are homogeneous (i.e. made of a single data type),
 , operations are vectorized & thus staggeringly fast

NumPy is mostly written in C & PyTorch in C++. With either library, when
you run vectorized operations on arrays/tensors, you don’t use raw Python
(slow) but compiled C/C++ code (much faster)

 is an excellent post explaining Python vectorization & why it makes
such a big difference

as
with NumPy's ndarrays

Here

https://www.pythonlikeyoumeanit.com/Module3_IntroducingNumpy/VectorizedOperations.html#Vectorized-Operations
https://pythonspeed.com/articles/vectorization-python/

Vectorized operations: comparisonVectorized operations: comparison

Raw Python method

Vectorized function

Create tensor. We use float64 here to avoid truncation errors
t = torch.rand(10**6, dtype=torch.float64)
Initialize the sum
sum = 0
Run loop
for i in range(len(t)): sum += t[i]
Print result
print(sum)

t.sum()

Vectorized operations: comparisonVectorized operations: comparison

Both methods give the same result

This is why we used �oat64:

While the accuracy remains excellent with �oat32 if we use the PyTorch function

torch.sum(), the raw Python loop gives a fairly inaccurate result

Output >>>

tensor(500023.0789, dtype=torch.float64)

tensor(500023.0789, dtype=torch.float64)

Vectorized operations: timingVectorized operations: timing

Let’s compare the timing with PyTorch built-in benchmark utility

Load utility
import torch.utils.benchmark as benchmark

Create a function for our loop
def sum_loop(t, sum):
 for i in range(len(t)): sum += t[i]

Vectorized operations: timingVectorized operations: timing

Now we can create the timers

t0 = benchmark.Timer(
 stmt='sum_loop(t, sum)',
 setup='from __main__ import sum_loop',
 globals={'t': t, 'sum': sum})

t1 = benchmark.Timer(
 stmt='t.sum()',
 globals={'t': t})

Vectorized operations: timingVectorized operations: timing

Let’s time 100 runs to have a reliable benchmark

I ran the code on my laptop with a dedicated GPU & 32GB RAM

print(t0.timeit(100))
print(t1.timeit(100))

Vectorized operations: timingVectorized operations: timing

Timing of raw Python loop

Timing of vectorized function

sum_loop(t, sum)
setup: from __main__ import sum_loop
 1.37 s
 1 measurement, 100 runs , 1 thread

t.sum()
 191.26 us
 1 measurement, 100 runs , 1 thread

Vectorized operations: timingVectorized operations: timing

Speedup:

The vectorized function runs more than 7,000

times faster!!!

1.37/(191.26 * 10**-6) = 7163

Even more important on GPUsEven more important on GPUs

We will talk about GPUs in detail later

Timing of raw Python loop on GPU (actually slower on GPU!)

Timing of vectorized function on GPU (here we do get a speedup)

sum_loop(t, sum)
setup: from __main__ import sum_loop
 4.54 s
 1 measurement, 100 runs , 1 thread

t.sum()
 50.62 us
 1 measurement, 100 runs , 1 thread

Even more important on GPUsEven more important on GPUs

Speedup:

On GPUs, it is even more important not to index repeatedly from a
tensor

On GPUs, the vectorized function runs almost

90,000 times faster!!!

4.54/(50.62 * 10**-6) = 89688

Simple mathematical operationsSimple mathematical operations

Output >>>

t1 = torch.arange(1, 5).view(2, 2); print(t1)
t2 = torch.tensor([[1, 1], [0, 0]]); print(t2)
t1 + t2 # Operation performed between elements at corresponding locations
t1 + 1 # Operation applied to each element of the tensor

tensor([[1, 2],
 [3, 4]])
tensor([[1, 1],
 [0, 0]])
tensor([[2, 3],
 [3, 4]])
tensor([[2, 3],
 [4, 5]])

ReductionReduction

Output >>>

Other reduction functions (e.g. mean) behave the same way

t = torch.ones(2, 3, 4); print(t)
t.sum() # Reduction over all entries

tensor([[[1., 1., 1., 1.],
 [1., 1., 1., 1.],
 [1., 1., 1., 1.]],
 [[1., 1., 1., 1.],
 [1., 1., 1., 1.],
 [1., 1., 1., 1.]]])
tensor(24.)

ReductionReduction

Output >>>

Reduction over a specific dimension
t.sum(0)
t.sum(1)
t.sum(2)

tensor([[2., 2., 2., 2.],
 [2., 2., 2., 2.],
 [2., 2., 2., 2.]])
tensor([[3., 3., 3., 3.],
 [3., 3., 3., 3.]])
tensor([[4., 4., 4.],
 [4., 4., 4.]])

ReductionReduction

Output >>>

Reduction over multiple dimensions
t.sum((0, 1))
t.sum((0, 2))
t.sum((1, 2))

tensor([6., 6., 6., 6.])
tensor([8., 8., 8.])
tensor([12., 12.])

In-place operationsIn-place operations

With operators post-�xed with _:

Output >>>

t1 = torch.tensor([1, 2]); print(t1)
t2 = torch.tensor([1, 1]); print(t2)
t1.add_(t2); print(t1)
t1.zero_(); print(t1)

tensor([1, 2])
tensor([1, 1])
tensor([2, 3])
tensor([0, 0])

In-place operations vs reassignmentsIn-place operations vs reassignments

Output >>>

t1 = torch.ones(1); t1, hex(id(t1))
t1.add_(1); t1, hex(id(t1)) # In-place operation: same address
t1 = t1.add(1); t1, hex(id(t1)) # Reassignment: new address in memory
t1 = t1 + 1; t1, hex(id(t1)) # Reassignment: new address in memory

(tensor([1.]), '0x7fc61accc3b0')
(tensor([2.]), '0x7fc61accc3b0')
(tensor([3.]), '0x7fc61accc5e0')
(tensor([4.]), '0x7fc61accc6d0')

Tensor viewsTensor views

Output >>>

t = torch.tensor([[1, 2, 3], [4, 5, 6]]); print(t)
t.size()
t.view(6)
t.view(3, 2)
t.view(3, -1) # Same: with -1, the size is inferred from other dimensions

tensor([[1, 2, 3],
 [4, 5, 6]])
torch.Size([2, 3])
tensor([1, 2, 3, 4, 5, 6])
tensor([[1, 2],
 [3, 4],
 [5, 6]])

Note the di�erenceNote the di�erence

Output >>>

t1 = torch.tensor([[1, 2, 3], [4, 5, 6]]); print(t1)
t2 = t1.t(); print(t2)
t3 = t1.view(3, 2); print(t3)

tensor([[1, 2, 3],
 [4, 5, 6]])
tensor([[1, 4],
 [2, 5],
 [3, 6]])
tensor([[1, 2],
 [3, 4],
 [5, 6]])

Logical operationsLogical operations

Output >>>

t1 = torch.randperm(5); print(t1)
t2 = torch.randperm(5); print(t2)
t1 > 3 # Test each element
t1 < t2 # Test corresponding pairs of elements

tensor([4, 1, 0, 2, 3])
tensor([0, 4, 2, 1, 3])
tensor([True, False, False, False, False])
tensor([False, True, True, False, False])

- What is a PyTorch tensor?- What is a PyTorch tensor?

- Memory storage- Memory storage

- Data type (dtype)- Data type (dtype)

- Basic operations- Basic operations

- Working with NumPy- Working with NumPy

- Linear algebra- Linear algebra

- Harvesting the power of GPUs- Harvesting the power of GPUs

- Distributed operations- Distributed operations

Conversion without copyConversion without copy

PyTorch tensors can be converted to NumPy ndarrays & vice-versa in a very
ef�cient manner as both objects share the same memory

Output >>>

t = torch.rand(2, 3); print(t)
t_np = t.numpy(); print(t_np) # From PyTorch tensor to NumPy ndarray

tensor([[0.8434, 0.0876, 0.7507],
 [0.1457, 0.3638, 0.0563]]) # PyTorch Tensor

[[0.84344184 0.08764815 0.7506627]
 [0.14567494 0.36384273 0.05629885]] # NumPy ndarray

Mind the di�erent defaultsMind the di�erent defaults

Output >>>

Remember that PyTorch tensors use 32-bit �oating points by default

(because this is what you want in neural networks)

But NumPy defaults to 64-bit

Depending on your work�ow, you might have to change dtype

t_np.dtype

dtype('float32')

From NumPy to PyTorchFrom NumPy to PyTorch

Output >>>

Here again, you might have to change dtype

import numpy as np
a = np.random.rand(2, 3); print(a)
a_pt = torch.from_numpy(a); print(a_pt) # From ndarray to tensor

[[0.55892276 0.06026952 0.72496545]
 [0.65659463 0.27697739 0.29141587]]

tensor([[0.5589, 0.0603, 0.7250],
 [0.6566, 0.2770, 0.2914]], dtype=torch.float64)

Notes about conversion without copyNotes about conversion without copy

t & t_np are objects of different Python types, so, as far as Python is

concerned, they have different addresses

Output >>>

id(t) == id(t_np)

False

Notes about conversion without copyNotes about conversion without copy

However— —they share an underlying C array in
memory & modifying one in-place also modi�es the other

Output >>>

that's quite confusing

t.zero_()
print(t_np)

tensor([[0., 0., 0.],
 [0., 0., 0.]])

[[0. 0. 0.]
 [0. 0. 0.]]

https://stackoverflow.com/q/61526297/9210961

Notes about conversion without copyNotes about conversion without copy

Lastly, as NumPy only works on CPU, to convert a PyTorch tensor allocated
to the GPU, the content will have to be copied to the CPU �rst

- What is a PyTorch tensor?- What is a PyTorch tensor?

- Memory storage- Memory storage

- Data type (dtype)- Data type (dtype)

- Basic operations- Basic operations

- Working with NumPy- Working with NumPy

- Linear algebra- Linear algebra

- Harvesting the power of GPUs- Harvesting the power of GPUs

- Distributed operations- Distributed operations

 modulemodule

All functions from implemented

(with accelerator & automatic differentiation support)

Some additional functions

Requires torch >= 1.9

Linear algebra support was less developed before the introduction of this module

torch.linalgtorch.linalg

numpy.linalg

https://pytorch.org/docs/master/linalg.html?highlight=linalg#module-torch.linalg
https://numpy.org/doc/stable/reference/routines.linalg.html

System of linear equations solverSystem of linear equations solver

Let’s have a look at an extremely basic example:

2x + 3y - z = 5

x - 2y + 8z = 21

6x + y - 3z = -1

We are looking for the values of x, y, & z that would satisfy this system

System of linear equations solverSystem of linear equations solver

We create a 2D tensor A of size (3, 3) with the coef�cients of the equations

& a 1D tensor b of size 3 with the right hand sides values of the equations

Output >>>

A = torch.tensor([[2., 3., -1.], [1., -2., 8.], [6., 1., -3.]]); print(A)
b = torch.tensor([5., 21., -1.]); print(b)

tensor([[2., 3., -1.],
 [1., -2., 8.],
 [6., 1., -3.]])
tensor([5., 21., -1.])

System of linear equations solverSystem of linear equations solver

Solving this system is as simple as running the torch.linalg.solve function:

Output >>>

Our solution is:

x = 1

y = 2

z = 3

x = torch.linalg.solve(A, b); print(x)

tensor([1., 2., 3.])

Verify our resultVerify our result

Output >>>

torch.allclose(A @ x, b)

True

System of linear equations solverSystem of linear equations solver

Here is another simple example:

Create a square normal random matrix
A = torch.randn(4, 4); print(A)
Create a tensor of right hand side values
b = torch.randn(4); print(b)

Solve the system
x = torch.linalg.solve(A, b); print(x)

Verify
torch.allclose(A @ x, b)

System of linear equations solverSystem of linear equations solver

Output >>>

tensor([[1.5091, 2.0820, 1.7067, 2.3804], # A (coefficients)
 [-1.1256, -0.3170, -1.0925, -0.0852],
 [0.3276, -0.7607, -1.5991, 0.0185],
 [-0.7504, 0.1854, 0.6211, 0.6382]])

tensor([-1.0886, -0.2666, 0.1894, -0.2190]) # b (right hand side values)

tensor([0.1992, -0.7011, 0.2541, -0.1526]) # x (our solution)

True # Verification

With 2 multidimensional tensorsWith 2 multidimensional tensors

Output >>>

A = torch.randn(2, 3, 3) # Must be batches of square matrices
B = torch.randn(2, 3, 5) # Dimensions must be compatible
X = torch.linalg.solve(A, B); print(X)
torch.allclose(A @ X, B)

tensor([[[-0.0545, -0.1012, 0.7863, -0.0806, -0.0191],
 [-0.9846, -0.0137, -1.7521, -0.4579, -0.8178],
 [-1.9142, -0.6225, -1.9239, -0.6972, 0.7011]],
 [[3.2094, 0.3432, -1.6604, -0.7885, 0.0088],
 [7.9852, 1.4605, -1.7037, -0.7713, 2.7319],
 [-4.1979, 0.0849, 1.0864, 0.3098, -1.0347]]])
True

Matrix inversionsMatrix inversions

It is faster & more numerically stable to solve a system of linear equations directly

than to compute the inverse matrix �rst

Limit matrix inversions to situations where it is

truly necessary

Matrix inversionsMatrix inversions

Output >>>

A = torch.rand(2, 3, 3) # Batch of square matrices
A_inv = torch.linalg.inv(A) # Batch of inverse matrices
A @ A_inv # Batch of identity matrices

tensor([[[1.0000e+00, -6.0486e-07, 1.3859e-06],
 [5.5627e-08, 1.0000e+00, 1.0795e-06],
 [-1.4133e-07, 7.9992e-08, 1.0000e+00]],
 [[1.0000e+00, 4.3329e-08, -3.6741e-09],
 [-7.4627e-08, 1.0000e+00, 1.4579e-07],
 [-6.3580e-08, 8.2354e-08, 1.0000e+00]]])

Other linear algebra functionsOther linear algebra functions

 contains many more functions:

 which generalizes matrix products

 which computes the solution X to the system

torch.tensordot(A, X) = B

 which computes the eigenvalues of a square matrix

…

torch.linalg

torch.tensordot

torch.linalg.tensorsolve

torch.linalg.eigvals

https://pytorch.org/docs/master/linalg.html?highlight=linalg#module-torch.linalg
https://pytorch.org/docs/master/generated/torch.tensordot.html#torch.tensordot
https://pytorch.org/docs/master/generated/torch.linalg.tensorsolve.html#torch.linalg.tensorsolve
https://pytorch.org/docs/master/generated/torch.linalg.eigvals.html#torch.linalg.eigvals

- What is a PyTorch tensor?- What is a PyTorch tensor?

- Memory storage- Memory storage

- Data type (dtype)- Data type (dtype)

- Basic operations- Basic operations

- Working with NumPy- Working with NumPy

- Linear algebra- Linear algebra

- Harvesting the power of GPUs- Harvesting the power of GPUs

- Distributed operations- Distributed operations

Device attributeDevice attribute

Tensor data can be placed in the memory of various processor types:

the RAM of CPU

the RAM of a GPU with CUDA support

the RAM of a GPU with

the RAM of an (e.g.) with the

AMD's ROCm support

XLA device Cloud TPU torch_xla package

https://pytorch.org/blog/pytorch-for-amd-rocm-platform-now-available-as-python-package/
https://www.tensorflow.org/xla
https://cloud.google.com/tpu
https://github.com/pytorch/xla/

Device attributeDevice attribute

The values for the device attributes are:

CPU: 'cpu'

GPU (CUDA & AMD’s ROCm): 'cuda'

XLA: xm.xla_device()

This last option requires to load the �rst:torch_xla package

import torch_xla
import torch_xla.core.xla_model as xm

https://github.com/pytorch/xla/

Creating a tensor on a speci�ic deviceCreating a tensor on a speci�ic device

By default, tensors are created on the CPU

Output >>>

Printed tensors only display attributes with values ≠ default values

t1 = torch.rand(2); print(t1)

tensor([0.1606, 0.9771]) # Implicit: device='cpu'

Creating a tensor on a speci�ic deviceCreating a tensor on a speci�ic device

You can create a tensor on an accelerator by specifying the device attribute

Output >>>

t2_gpu = torch.rand(2, device='cuda'); print(t2_gpu)

tensor([0.0664, 0.7829], device='cuda:0') # :0 means the 1st GPU

Copying a tensor to a speci�ic deviceCopying a tensor to a speci�ic device

You can also make copies of a tensor on other devices

Output >>>

Make a copy of t1 on the GPU
t1_gpu = t1.to(device='cuda'); print(t1_gpu)
t1_gpu = t1.cuda() # Same as above written differently

Make a copy of t2_gpu on the CPU
t2 = t2_gpu.to(device='cpu'); print(t2)
t2 = t2_gpu.cpu() # For the altenative form

tensor([0.1606, 0.9771], device='cuda:0')
tensor([0.0664, 0.7829]) # Implicit: device='cpu'

Multiple GPUsMultiple GPUs

If you have multiple GPUs, you can optionally specify which one a tensor
should be created on or copied to

Or the equivalent short forms for the last two:

t3_gpu = torch.rand(2, device='cuda:0') # Create a tensor on 1st GPU
t4_gpu = t1.to(device='cuda:0') # Make a copy of t1 on 1st GPU
t5_gpu = t1.to(device='cuda:1') # Make a copy of t1 on 2nd GPU

t4_gpu = t1.cuda(0)
t5_gpu = t1.cuda(1)

TimingTiming

Let’s compare the timing of some matrix multiplications on CPU & GPU with
PyTorch built-in benchmark utility

I ran the code on my laptop with a dedicated GPU & 32GB RAM

Load utility
import torch.utils.benchmark as benchmark
Define tensors on the CPU
A = torch.randn(500, 500)
B = torch.randn(500, 500)
Define tensors on the GPU
A_gpu = torch.randn(500, 500, device='cuda')
B_gpu = torch.randn(500, 500, device='cuda')

TimingTiming

Let’s time 100 runs to have a reliable benchmark

t0 = benchmark.Timer(
 stmt='A @ B',
 globals={'A': A, 'B': B})

t1 = benchmark.Timer(
 stmt='A_gpu @ B_gpu',
 globals={'A_gpu': A_gpu, 'B_gpu': B_gpu})

print(t0.timeit(100))
print(t1.timeit(100))

TimingTiming
Output >>>

Speedup:

This computation was 21 times faster on my GPU than on CPU

A @ B
 2.29 ms
 1 measurement, 100 runs , 1 thread

A_gpu @ B_gpu
 108.02 us
 1 measurement, 100 runs , 1 thread

(2.29 * 10**-3)/(108.02 * 10**-6) = 21

TimingTiming
By replacing 500 with 5000, we get:

Speedup:

The larger the computation, the greater the bene�t: now 38 times faster

A @ B
 2.21 s
 1 measurement, 100 runs , 1 thread

A_gpu @ B_gpu
 57.88 ms
 1 measurement, 100 runs , 1 thread

2.21/(57.88 * 10**-3) = 38

- What is a PyTorch tensor?- What is a PyTorch tensor?

- Memory storage- Memory storage

- Data type (dtype)- Data type (dtype)

- Basic operations- Basic operations

- Working with NumPy- Working with NumPy

- Linear algebra- Linear algebra

- Harvesting the power of GPUs- Harvesting the power of GPUs

- Distributed operations- Distributed operations

Parallel tensor operationsParallel tensor operations

PyTorch already allows for

The implementation of distributed tensor operations—for instance for
linear algebra—is

 that can be sharded across nodes

See also for more comments about upcoming developments on
(among other things) tensor sharding

distributed training of ML models

in the work through the use of a ShardedTensor
primitive

this issue

https://pytorch.org/tutorials/beginner/dist_overview.html
https://github.com/pytorch/pytorch/issues/69971
https://github.com/pytorch/pytorch/issues/55207

Questions?Questions?

